extension | φ:Q→Out N | d | ρ | Label | ID |
(C4×S3).1C23 = C2×D8⋊S3 | φ: C23/C2 → C22 ⊆ Out C4×S3 | 48 | | (C4xS3).1C2^3 | 192,1314 |
(C4×S3).2C23 = D8⋊13D6 | φ: C23/C2 → C22 ⊆ Out C4×S3 | 48 | 4 | (C4xS3).2C2^3 | 192,1316 |
(C4×S3).3C23 = C2×Q8⋊3D6 | φ: C23/C2 → C22 ⊆ Out C4×S3 | 48 | | (C4xS3).3C2^3 | 192,1318 |
(C4×S3).4C23 = C2×D4.D6 | φ: C23/C2 → C22 ⊆ Out C4×S3 | 96 | | (C4xS3).4C2^3 | 192,1319 |
(C4×S3).5C23 = SD16⋊13D6 | φ: C23/C2 → C22 ⊆ Out C4×S3 | 48 | 4 | (C4xS3).5C2^3 | 192,1321 |
(C4×S3).6C23 = C2×Q16⋊S3 | φ: C23/C2 → C22 ⊆ Out C4×S3 | 96 | | (C4xS3).6C2^3 | 192,1323 |
(C4×S3).7C23 = D12.30D4 | φ: C23/C2 → C22 ⊆ Out C4×S3 | 96 | 4 | (C4xS3).7C2^3 | 192,1325 |
(C4×S3).8C23 = SD16⋊D6 | φ: C23/C2 → C22 ⊆ Out C4×S3 | 48 | 4 | (C4xS3).8C2^3 | 192,1327 |
(C4×S3).9C23 = D8⋊15D6 | φ: C23/C2 → C22 ⊆ Out C4×S3 | 48 | 4+ | (C4xS3).9C2^3 | 192,1328 |
(C4×S3).10C23 = D8⋊11D6 | φ: C23/C2 → C22 ⊆ Out C4×S3 | 48 | 4 | (C4xS3).10C2^3 | 192,1329 |
(C4×S3).11C23 = D8.10D6 | φ: C23/C2 → C22 ⊆ Out C4×S3 | 96 | 4- | (C4xS3).11C2^3 | 192,1330 |
(C4×S3).12C23 = S3×C8⋊C22 | φ: C23/C2 → C22 ⊆ Out C4×S3 | 24 | 8+ | (C4xS3).12C2^3 | 192,1331 |
(C4×S3).13C23 = D8⋊5D6 | φ: C23/C2 → C22 ⊆ Out C4×S3 | 48 | 8+ | (C4xS3).13C2^3 | 192,1333 |
(C4×S3).14C23 = D8⋊6D6 | φ: C23/C2 → C22 ⊆ Out C4×S3 | 48 | 8- | (C4xS3).14C2^3 | 192,1334 |
(C4×S3).15C23 = S3×C8.C22 | φ: C23/C2 → C22 ⊆ Out C4×S3 | 48 | 8- | (C4xS3).15C2^3 | 192,1335 |
(C4×S3).16C23 = C24.C23 | φ: C23/C2 → C22 ⊆ Out C4×S3 | 48 | 8+ | (C4xS3).16C2^3 | 192,1337 |
(C4×S3).17C23 = SD16.D6 | φ: C23/C2 → C22 ⊆ Out C4×S3 | 96 | 8- | (C4xS3).17C2^3 | 192,1338 |
(C4×S3).18C23 = C2×Q8.15D6 | φ: C23/C2 → C22 ⊆ Out C4×S3 | 96 | | (C4xS3).18C2^3 | 192,1519 |
(C4×S3).19C23 = C2×Q8○D12 | φ: C23/C2 → C22 ⊆ Out C4×S3 | 96 | | (C4xS3).19C2^3 | 192,1522 |
(C4×S3).20C23 = D6.C24 | φ: C23/C2 → C22 ⊆ Out C4×S3 | 48 | 8- | (C4xS3).20C2^3 | 192,1525 |
(C4×S3).21C23 = S3×2- 1+4 | φ: C23/C2 → C22 ⊆ Out C4×S3 | 48 | 8- | (C4xS3).21C2^3 | 192,1526 |
(C4×S3).22C23 = D12.39C23 | φ: C23/C2 → C22 ⊆ Out C4×S3 | 48 | 8+ | (C4xS3).22C2^3 | 192,1527 |
(C4×S3).23C23 = C2×S3×D8 | φ: C23/C22 → C2 ⊆ Out C4×S3 | 48 | | (C4xS3).23C2^3 | 192,1313 |
(C4×S3).24C23 = C2×D8⋊3S3 | φ: C23/C22 → C2 ⊆ Out C4×S3 | 96 | | (C4xS3).24C2^3 | 192,1315 |
(C4×S3).25C23 = C2×S3×SD16 | φ: C23/C22 → C2 ⊆ Out C4×S3 | 48 | | (C4xS3).25C2^3 | 192,1317 |
(C4×S3).26C23 = C2×Q8.7D6 | φ: C23/C22 → C2 ⊆ Out C4×S3 | 96 | | (C4xS3).26C2^3 | 192,1320 |
(C4×S3).27C23 = C2×S3×Q16 | φ: C23/C22 → C2 ⊆ Out C4×S3 | 96 | | (C4xS3).27C2^3 | 192,1322 |
(C4×S3).28C23 = C2×D24⋊C2 | φ: C23/C22 → C2 ⊆ Out C4×S3 | 96 | | (C4xS3).28C2^3 | 192,1324 |
(C4×S3).29C23 = S3×C4○D8 | φ: C23/C22 → C2 ⊆ Out C4×S3 | 48 | 4 | (C4xS3).29C2^3 | 192,1326 |
(C4×S3).30C23 = D8⋊4D6 | φ: C23/C22 → C2 ⊆ Out C4×S3 | 48 | 8- | (C4xS3).30C2^3 | 192,1332 |
(C4×S3).31C23 = D24⋊C22 | φ: C23/C22 → C2 ⊆ Out C4×S3 | 48 | 8+ | (C4xS3).31C2^3 | 192,1336 |
(C4×S3).32C23 = C22×S3×Q8 | φ: C23/C22 → C2 ⊆ Out C4×S3 | 96 | | (C4xS3).32C2^3 | 192,1517 |
(C4×S3).33C23 = C22×C8⋊S3 | φ: C23/C22 → C2 ⊆ Out C4×S3 | 96 | | (C4xS3).33C2^3 | 192,1296 |
(C4×S3).34C23 = C2×C8○D12 | φ: C23/C22 → C2 ⊆ Out C4×S3 | 96 | | (C4xS3).34C2^3 | 192,1297 |
(C4×S3).35C23 = C2×D12.C4 | φ: C23/C22 → C2 ⊆ Out C4×S3 | 96 | | (C4xS3).35C2^3 | 192,1303 |
(C4×S3).36C23 = M4(2)⋊26D6 | φ: C23/C22 → C2 ⊆ Out C4×S3 | 48 | 4 | (C4xS3).36C2^3 | 192,1304 |
(C4×S3).37C23 = M4(2)⋊28D6 | φ: C23/C22 → C2 ⊆ Out C4×S3 | 48 | 4 | (C4xS3).37C2^3 | 192,1309 |
(C4×S3).38C23 = C6.C25 | φ: C23/C22 → C2 ⊆ Out C4×S3 | 48 | 4 | (C4xS3).38C2^3 | 192,1523 |
(C4×S3).39C23 = S3×C22×C8 | φ: trivial image | 96 | | (C4xS3).39C2^3 | 192,1295 |
(C4×S3).40C23 = C2×S3×M4(2) | φ: trivial image | 48 | | (C4xS3).40C2^3 | 192,1302 |
(C4×S3).41C23 = S3×C8○D4 | φ: trivial image | 48 | 4 | (C4xS3).41C2^3 | 192,1308 |